Sarychev Peak

Photo of this volcano
Google Earth icon
Google Earth Placemark
  • Country
  • Subregion Name
  • Primary Volcano Type
  • Last Known Eruption
  • 48.092°N
  • 153.2°E

  • 1496 m
    4907 ft

  • 290240
  • Latitude
  • Longitude

  • Summit
    Elevation

  • Volcano
    Number

24 November-30 November 2010

Based on satellite image observations, SVERT reported that steam-and-gas emissions rose from Sarychev Peak on 28 November. Sarychev Peak does not have a seismic network; satellite imagery is the primary tool for monitoring many of the Kurile Islands volcanoes.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)



 Available Weekly Reports


2010: February | March | May | September | November
2009: June | July | November


24 November-30 November 2010

Based on satellite image observations, SVERT reported that steam-and-gas emissions rose from Sarychev Peak on 28 November. Sarychev Peak does not have a seismic network; satellite imagery is the primary tool for monitoring many of the Kurile Islands volcanoes.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


29 September-5 October 2010

SVERT reported that a diffuse ash plume from Sarychev Peak was detected by satellite on 20 September. Sarychev Peak does not have a seismic network; satellite image observations are the primary tool for monitoring many of the Kurile Islands volcanoes.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


26 May-1 June 2010

SVERT reported that a thermal anomaly on Sarychev Peak was detected by satellite on 27 May. Sarychev Peak does not have a seismic network; satellite image observations are the primary tool for monitoring many of the Kurile Islands volcanoes.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


10 March-16 March 2010

SVERT reported that a thermal anomaly on Sarychev Peak was detected by satellite on 9 March.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


3 February-9 February 2010

SVERT reported that a thermal anomaly on Sarychev Peak was detected by satellite on 3 February.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


25 November-1 December 2009

SVERT reported that a thermal anomaly on Sarychev Peak was detected by satellite on 25 November. Steam-and-gas emissions were noted on 25, 26, and 29 November.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


18 November-24 November 2009

SVERT reported that a thermal anomaly on Sarychev Peak was detected by satellite on 21 November.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


22 July-28 July 2009

Based on analyses of satellite imagery, SVERT reported that on 22 July a gas-and-steam plume from Sarychev Peak drifted 35 km N. Cloud cover prevented observations during 23-26 July. On 27 July, a steam-and-gas plume possibly containing some ash rose to an altitude of 3.7 km (12,000 ft) a.s.l. and drifted 55 km NW.

Sources: Sakhalin Volcanic Eruption Response Team (SVERT), Tokyo Volcanic Ash Advisory Center (VAAC)


15 July-21 July 2009

Based on analyses of satellite imagery, SVERT reported that gas-and-steam plumes from Sarychev Peak were seen on satellite imagery during 15, 18-19, and 21 July. Plumes drifted 30-50 km W and S. Cloud cover prevented observations during 16-17 and 20 July. Sarychev Peak does not have a seismic network.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


8 July-14 July 2009

Based on analyses of satellite imagery, SVERT reported that diffuse gas-and-steam plumes from Sarychev Peak were seen on satellite imagery during 8-10 and 12 July. Plumes drifted 15 km E on 8 July. The plumes seen on 9 July drifted 50 km E and may have contained some ash. Gas-and-ash plumes drifted 40 km E on 13 July and 25 km W and NW on 14 July.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


1 July-7 July 2009

SVERT reported that an intense thermal anomaly from Sarychev Peak was detected on satellite imagery during 1-6 July. Gas-and-steam plumes were seen almost daily and drifted 20-75 km NW, NE, and SE. Plumes rose to altitudes of 1.5-3 km (4,900-10,000 ft) a.s.l. during 4-5 July. No large ash explosions were noted after 16 June.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


24 June-30 June 2009

SVERT reported that an intense thermal anomaly from Sarychev Peak was detected on satellite imagery during 24-30 June. Gas-and-steam plumes drifted 9 km NW on 24 June, S on 26 June, 26 km SSE on 28 June, and 40 km SE at an altitude of 3 km on 29 June.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


17 June-23 June 2009

The eruption from Sarychev Peak that began on 11 June continued through the 19th. SVERT reported another explosive eruption at 1730 UTC on 15 June, followed by the satellite observation of a plume early on 16 June that extended 360 km NW. The Tokyo VAAC estimated that the 16 June plume rose to an altitude of 9.7 km (32,000 feet) a.s.l., while higher ash clouds from earlier explosions reached 13.7 km (45,000 feet) altitude. Ash emissions continued during 17-18 June, causing ashfall in Yuzhno-Sakhalinsk, and gas-and-steam plumes spread NE and SW. Thermal anomalies were detected in satellite data on 18 and 19 June, but cloudy conditions prevented clear observations. One MODIS image on 18 June showed an ash plume spreading SW above the weather clouds. Although the Aviation Color Code was lowered from Red to Orange on 19 June, satellite observations showed that a diffuse ash cloud had spread approximately 20 km S and 40 km W of the volcano.

Source: Sakhalin Volcanic Eruption Response Team (SVERT)


10 June-16 June 2009

Based on analysis of satellite imagery, SVERT reported that on 11 June a thermal anomaly from Sarychev Peak and a possible diffuse ash plume were detected. Seismicity was at background levels. The next day, a large thermal anomaly was present and ash emissions were were seen on satellite imagery. On 13 June, ash plumes rose to an altitude of 7.5 km (24,600 ft) a.s.l. and drifted 200 km SW and 105 km SE. On 14 June, a large eruption produced an ash plume that rose to an altitude of 12 km (39,400 ft) a.s.l. A large explosion the next day sent an ash plume to an altitude of 8 km (26,200 ft) a.s.l. Sarychev Peak is not monitored with ground-based instruments. According to news articles, some airlines have re-routed, canceled, or delayed flights.

Sources: Sakhalin Volcanic Eruption Response Team (SVERT), The Province, Canada.com (Postmedia Network)


Summary of eruption dates and Volcanic Explosivity Indices (VEI).

Start Date Stop Date Eruption Certainty VEI Evidence Activity Area or Unit
[ 2010 Sep 20 ] [ 2010 Sep 20 ] Uncertain 2  
2009 Jun 11 2009 Jul (?) Confirmed 4 Historical Observations
1989 Jan 13 1989 Jan 14 Confirmed 1 Historical Observations
1986 Sep (?) Unknown Confirmed   Historical Observations
1976 Sep 23 1976 Oct 2 Confirmed 2 Historical Observations
1965 Dec 9 1965 Dec 9 Confirmed 2 Historical Observations
1960 Aug 30 1960 Aug 30 Confirmed 3 Historical Observations
1954 Aug 1954 Oct Confirmed 2 Historical Observations
1946 Nov 9 1946 Nov 19 Confirmed 4 Historical Observations
[ 1932 (?) ] [ Unknown ] Uncertain    
1930 Feb 13 1930 Feb 13 Confirmed 3 Historical Observations
1928 Feb 14 Unknown Confirmed 2 Historical Observations
1927 Unknown Confirmed 2 Historical Observations
1923 Jan 17 1923 Jan 22 Confirmed 2 Historical Observations
1879 Jan 15 ± 45 days Unknown Confirmed 0 Historical Observations
1805 Unknown Confirmed   Historical Observations
1765 ± 5 years Unknown Confirmed 2 Historical Observations

The following references are the sources used for data regarding this volcano. References are linked directly to our volcano data file. Discussion of another volcano or eruption (sometimes far from the one that is the subject of the manuscript) may produce a citation that is not at all apparent from the title. Additional discussion of data sources can be found under Volcano Data Criteria.

Gorshkov G S, 1958. Kurile Islands. Catalog of Active Volcanoes of the World and Solfatara Fields, Rome: IAVCEI, 7: 1-99.

Gorshkov G S, 1970. Volcanism and the Upper Mantle; Investigations in the Kurile Island Arc. New York: Plenum Publishing Corp, 385 p.

Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.