Heard

Photo of this volcano
Google Earth icon
  Google Earth Placemark
  • Country
  • Volcanic Region
  • Primary Volcano Type
  • Last Known Eruption
  • 53.106°S
  • 73.513°E

  • 2745 m
    9004 ft

  • 234010
  • Latitude
  • Longitude

  • Summit
    Elevation

  • Volcano
    Number

1 May-7 May 2013

According to NASA Earth Observatory (EO) an image acquired on 7 April from the Advanced Land Imager (ALI) on NASA's EO-1 satellite showed that Mawson's Peak crater on Heard Island had filled and a lava flow had traveled down the SW flank. The lava flow was visible in an image acquired on 20 April and had slightly widened just below the summit.

Source: NASA Earth Observatory

Index of Weekly Reports


2013: May
2012: October
2006: June

Weekly Reports


1 May-7 May 2013

According to NASA Earth Observatory (EO) an image acquired on 7 April from the Advanced Land Imager (ALI) on NASA's EO-1 satellite showed that Mawson's Peak crater on Heard Island had filled and a lava flow had traveled down the SW flank. The lava flow was visible in an image acquired on 20 April and had slightly widened just below the summit.

Source: NASA Earth Observatory


24 October-30 October 2012

According to Volcano Live, satellite imagery of Heard Island showed thermal anomalies on 21 and 24 September, and 10 and 19 October. NASA's Earth Observatory reported that a satellite image acquired on 13 October showed a possible dark area in the summit crater of Mawson Peak and hot surfaces within the crater, indicating the presence of lava in or just beneath the crater.

Sources: Volcano Live; NASA Earth Observatory


7 June-13 June 2006

From 11 March to 2 June, MODVOLC (a MODIS thermal alert system) detected approximately 10 alerts from or near the summit of Big Ben on Heard Island. The area of the thermal anomaly was 1 to 2 pixels in size (1 pixel=1 km).

Source: Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts Team


Index of Monthly Reports

Reports are organized chronologically and indexed below by Month/Year (Publication Volume:Number), and include a one-line summary. Click on the index link or scroll down to read the reports.

02/1985 (SEAN 10:02) Lava flow from upper S flank vent; plume

10/1985 (SEAN 10:10) Steam and two areas of glow

05/1992 (BGVN 17:05) Plumes and glow; volcano morphology and 1986-87 activity described; 1992 summit eruption

12/1992 (BGVN 17:12) New lava flow on SW flank

02/1998 (BGVN 23:02) No evidence of recent activity in March

11/2000 (BGVN 25:11) Discovery of a distinct vent below Mawson Peak; brown fumes in November

02/2001 (BGVN 26:02) Increased fumarolic activity in February and March 2001; possible lava flow

03/2001 (BGVN 26:03) Photographs of upper slopes substantiate reports of activity from two distinct vents

01/2003 (BGVN 28:01) Infrared data show previously unknown activity during May-June 2000

12/2004 (BGVN 29:12) Thermal alerts indicate crater lake activity starting in June 2003 until June 2004

05/2006 (BGVN 31:05) 2006 imagery indicates renewed volcanism

11/2006 (BGVN 31:11) ASTER images show hotspot for possible lava lake and flow 8 December

03/2007 (BGVN 32:03) Thermal anomalies ~ 300 m apart may suggest two vents

06/2007 (BGVN 32:06) Eruption ends in April; three eruptions of more than 11 months long since 2000

01/2008 (BGVN 33:01) Rare thermal anomalies through March 2008 suggest eruptions

09/2010 (BGVN 35:09) Quiet, with minor thermal anomalies, since March 2008

01/2013 (BGVN 38:01) Satellite imagery reveals lava flows in December 2012

08/2013 (BGVN 38:08) Satellite thermal alerts continue to early October 2013


Contents of Monthly Reports

All information contained in these reports is preliminary and subject to change.

All times are local (= UTC + 7 hours)

02/1985 (SEAN 10:02) Lava flow from upper S flank vent; plume

During the night of 14-15 January, personnel of the French oceanographic mission Sibex (ship) observed an eruption on Heard Island. A lava flow emerged from a vent at ~ 2,750 m altitude, on the upper S flank (between Big Ben and Mawson, figure 1). For 2 days, a plume was visible from 32 km away. An image from the NOAA 7 polar orbiting satellite showed a diffuse plume extending SE from the island on 14 January at 1712. The plume was narrow over the island, widening over the ocean until obscured by weather clouds 20-25 km to the SE. The next day at 1658, NOAA 7 imagery showed that the island was free of weather clouds, but no volcanic plume was evident.

Figure 1.Sketch map of Heard Island, from Neumann van Padang (1963).

Reference. Neumann van Padang, M., 1963, Catalog of active volcanoes of the world, Part XVI.

Information Contacts: J. Bull, Terres Australes et Antarctiques Françaises; A. Giret, Expeditions Polaires Françaises; J-L. Cheminée, IPG, Paris; W. Gould, NOAA.

10/1985 (SEAN 10:10) Steam and two areas of glow

No further reports of volcanic activity on this remote, uninhabited island were received until 29 September, when scientists from the MV Nella Dan (ship) observed steam rising from a vertical crack in the Gotley Glacier (on the SW flank). On 4 October at about 2100, from 11.5 km offshore, two distinct areas of glow were observed: at the summit, and at a point between 1,500 and 2,000 m altitude in Gotley Glacier, 6.5-7 km from the summit. The observers believed the flank glow to be a second source of lava, although they noted the possibility that lava originating at the summit might have flowed under the glacier and emerged at that point. Space Shuttle astronauts observed the volcano emitting vapor every day during their 30 October-5 November mission and took a photograph (no. 61A-49-047), but there was no sign of fresh lava or ash on the summit.

Further Reference. Quilty, P., 1985, New volcanic vent on Heard Island?: ANARE News, December. 1985, p. 11.

Information Contacts: R. Varne, Univ. of Tasmania; M. Helfert, NASA.

05/1992 (BGVN 17:05) Plumes and glow; volcano morphology and 1986-87 activity described; 1992 summit eruption

[The following from Graeme Wheller] includes observations of continued activity in late 1986 and early 1987, and a renewed eruption in 1992.

Volcano morphology. Heard Island consists of two volcanic cones, Big Ben and Mt. Dixon, joined by a narrow isthmus (figure 2). Both cones are young, but only Big Ben has been observed to erupt. Many young lavas, including two that are unvegetated, lie on the flanks of Mt. Dixon. The separation of the two volcanoes is evident from the contrasting petrographic, geochemical, and isotopic characteristics of their respective eruptives [(Barling and others, 1994)].

Figure 2.Geologic sketch map of Heard Island (after Barling, 1990) showing the location of the lava flow observed by Rod Ledingham in mid-January 1993.

Big Ben is a large, glacier-covered, composite cone 20-25 km in diameter at sea-level, consisting mainly of basaltic lavas and lesser ash and scoria. Its summit region consists of a SW-facing semi-circular ridge 5-6 km in diameter, 2,200-2,400 m asl. The ridge appears to have formed from breaching of the SW flank of Big Ben, possibly by landsliding caused by seismicity or a laterally directed blast. The E, N, and W flanks of Big Ben have been deeply scoured by glacial erosion, forming high-standing radial ribs to 7-8 km long.

Eruptions have built a new regularly shaped cone, Mawson Peak, within the breached region of the summit. Mawson Peak is snow-and ice-covered on all sides, . . . and its SW flank slopes smoothly to the coast. All . . . historical volcanism has apparently originated at the summit of Mawson Peak.

Young volcanic deposits. Mt. Dixon, much smaller than Big Ben, appears to be the latest manifestation of volcanic activity that has created a peninsula 9 km long and up to 5 km wide extending from the NW side of Big Ben. Mt. Dixon, at the end of the peninsula, is a glacier-covered rounded cone 706 m tall. More than 20 separate relatively young basaltic lava flows have been identified on its flanks, including two that are largely vegetation-free and may have been erupted within the last few hundred years. These lavas have flowed from vents on the upper flanks of Mt. Dixon, except for one from a fissure marked by an elongate scoria ridge ~1 km long near the base of the S flank. A crater ~50 m in diameter occurs at the head of one W-flank flow ~1 km inland. Several small hornitos occur on the lava flow near this crater. One is still well-formed, ~2.5 m high and 3-4 m in diameter, but the others have largely collapsed. On the W and N flanks of Mt. Dixon, particularly near Red Island, trachytic lavas lie beneath the basalt lavas.

Eleven parasitic scoria cones and associated small basaltic lava flows occur around the coastline . . . . Some are at or near the edges of vertical sea cliffs, indicating that erosion by the sea may have obliterated other cones. The parasitic cones are typically ~100 m high and well-formed with deep central craters. Lava spatter usually occurs abundantly around the upper parts of the cones. Lavas produced from these vents are typically small-volume pahoehoe flows. From their morphology and relative lack of vegetation, the cones and their lavas may be only a few thousand years old. On Azorella Peninsula, the parasitic cone forms the W side of Corinth Head which, together with Rogers Head, appears to be a remnant of an older and much larger cone formed of thinly stratified leucocratic tuff. The basaltic flow erupted from the Corinth Head crater contains partly collapsed tumuli and lava tunnels.

A similarly youthful, trachytic, airfall (Plinian?) pumice deposit 1-1.5 m thick occurs at the E end of the island. The lower 0.5 m of the deposit is distinctly darker than the upper part, showing a sharp horizontal transition. The deposit is overlain by moraine but underlying material is not visible. Similar deposits are not known from any other parts of the island. Although it is primary deposit and must therefore have been produced by an eruption on Heard Island, the location of its originating vent is not known.

December 1986-January 1987 activity. A deep, well-formed crater at the top of Mawson Peak was discovered on helicopter overflights in December 1986 and January 1987, during the 1986/87 Heard Island ANARE. On 21 December, a brief landing was made on the summit beside the crater. The crater was cylindrical and, from visual estimates, ~40-50 m in diameter and 50-70 m deep, with vertical walls exposing dark horizontal ash layers thinly coated in yellow sulfur. The crater was floored by a black ropy lava surface in which small patches of red lava periodically appeared, indicating an active lava lake within the crater. Larger red patches, ~ 5-10 m across, appeared less frequently, accompanied by gentle emissions of a little blue smoke. Minor steam emission also occurred from around the crater rim and from a rocky area on the crater's E side. The crater appears to have been formed by the 1985/87 eruption because it was not seen by climbing parties that reached the summit of Mawson Peak in 1965 and 1983.

A new pahoehoe lava flow in a glacial valley on Mawson Peak's SW flank was also discovered during the 1986/87 ANARE. The flow extended ~8-9 km from the summit crater rim, where it exited through a deep V-shaped notch, to within 2-3 km of the coast (near Cape Arkona). Small amounts of steam emanated from parts of the flow, which probably formed in January 1985, as observed from the Marion Dufresne.

1992 summit activity. Satellite images and observations from the ANARE base revealed eruptive activity in 1992. Data from the NOAA 11 polar orbiter showed plumes extending 300 km NNE then E from the island on 17 January at about 1720, and 200 km NE the next day at 0300. Weather in the region is usually cloudy, and no other activity was evident . . . until a short-lived thermal anomaly was detected on 18 May at 2146. The ANARE team had not yet reached Heard Island on 17 January, but the summit area was visible for 20 days in March, 18 days in April, and 7 days in May (as of the 29th). Gas had been emerging from the summit during fieldwork in mid-1990, but no activity was evident in 1992 until 29 May, when an orange glow was first noticed above the mountain at 2130. The glow rapidly intensified and appeared to be pulsating, faded after about a minute, then reappeared a few minutes later. Three or four such cycles were observed, with glow intensity changing randomly. Glow faded for the last time at about 2200. Although some auroral activity occurred that night, none of the observers believed that it was the source of the glow. Activity was next reported on 8 June, when vapor began to emerge from the summit at about 1430, soon forming a plume to the SE. Mist soon obscured the activity. Traces of steam were also visible on 10 June.

Reference. Barling, J., 1990, Heard and McDonald Islands, in Le Masurier, W., and Thomson, J., eds., Volcanoes of the Antarctic Plate and southern Oceans: American Geophysical Union, Washington DC, p. 435-441.

Further References. Barling, J., Goldstein, S.L., and Nicholls, I.A., 1994, Geochemistry of Heard Island (southern Indian Ocean): characterisation of an enriched mantle component and implications for enrichment of sub-Indian Ocean mantle: Journal of Petrology, v. 35, p. 1017-1053.

Hilton, D.R., Barling, J., and Wheller, G.E., 1995, Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas: Nature, v. 373, p. 330-333.

Information Contacts: G. Wheller, CSIRO Division of Exploration Geoscience, Australia; R. Varne, Univ of Tasmania; A. Vrana, K. Green, and T. Jacka, Australian Antarctic Division, Tasmania; W. Gould, NOAA/NESDIS.

12/1992 (BGVN 17:12) New lava flow on SW flank

Evidence of recent eruptive activity was observed by Rod Ledingham, a geologist aboard the cruise ship Kapitan Klebnikov, during a visit . . . in mid-January. Lava had emerged from a new wedge-shaped graben-like feature that extended roughly 150 m down the summit cone's SW flank (figure 2). The flow had divided into two lobes and advanced to below 1,400 m elevation, apparently along approximately the same path taken by the 1985-87 lava. Steam rose from its distal end, but the central part of the flow appeared to be lightly snow-covered. A narrow plume rose from the summit crater, and the area from there E to the caldera wall was covered with gray ash. Vapor was also rising from a fissure roughly 100 m below the summit.

A team of five biologists has been on the island for ~14 months, but weather conditions are poor and the start time of the eruption is uncertain. Attila Vrana, head of the team, reported a strongly felt earthquake on 19 December that was not documented by the Worldwide Standardized Seismic Net.

Information Contacts: P. Quilty, Australian Antarctic Division, Tasmania.

02/1998 (BGVN 23:02) No evidence of recent activity in March

During 18-21 March geologists sampled Holocene lava flows on Heard Island. On beaches of the N Laurens Peninsula, they found fresh pumice ranging in size up to about 20 x 20 cm . The pumice was concentrated among other storm- transported debris a little distance above the normal surf zone and appeared to have been deposited by wave action. Light creamy green to pale gray in color, the pumice had angular, ovoid or flattened shapes and contained predominantly microphenocrysts and occasional phenocrysts visible to the naked eye. Lithic fragments were not observed.

On Heard Island, Big Ben's summit was usually obscured by clouds. The summit was visible on 20 March, however, and at this time no evidence of recent volcanic activity was observed at Mawson Peak, Big Ben's recently active crater (figure 3). Similarly no plume was seen coming from Heard when McDonald vented steam in early April. In accord with these observations, scientists inferred that the December 1996-January 1997 volcanic activity attributed to Heard actually denoted activity at McDonald.

Figure 3. Map of Heard Island showing principal volcanic centers on both the Laurens and Azorella Peninsulas (see shaded boxes) and on Big Ben (the massif comprising the bulk of the SE part of the island). The beached pumice samples were collected at the N end of the Laurens Peninsula. Courtesy of K. Collerson.

References. LeMasurier, W.E., and Thompson, J.W., primary eds., 1990, Volcanoes of the Antarctic Plate and Southern Oceans, Antarctic Research Series: American Geophysical Union, Washington, D. C. (ISBN 0066-4634).

Collerson, K. D., 1997, Field studies at Heard and McDonald Island in March 1997: unpublished Australian National Antarctic Research Expedition (ANARE) report.

Information Contacts: Kenneth Collerson, Department of Earth Sciences, University of Queensland, Brisbane, Queensland 4072, Australia (Email: k.collerson@mailbox.uq.edu.au); Kevin Kiernan, Department of Geography and Environmental Sciences, University of Newcastle, Newcastle, New South Wales 2300, Australia; Richard Williams, Australian Antarctic Division, Channel Highway, Hobart, Tasmania, Australia; Andrew Tupper, Northern Territory Regional Forecasting Centre, Bureau of Meteorology, P. O. Box 735, Darwin, Northern Territory 0801, Australia.

11/2000 (BGVN 25:11) Discovery of a distinct vent below Mawson Peak; brown fumes in November

Activity from Mawson Peak, a discrete volcanic cone that lies atop Big Ben stratovolcano, was observed by the Australian National Antarctic Research Expedition (ANARE) during October-November 2000. Frequent cloud cover obscured Big Ben.

On 19 October, workers observed several hours of fumarolic activity from the RSV Aurora Australis while 2-3 km off the N shore of Heard Island between Corinthian and Spit Bays. Gaseous emissions were rising at least 200 m above the summit. During the early morning of 20 October, those aboard the ship observed similar continuing activity until clouds obscured the view. From the Red Island area at the W end of Heard Island, on 28 October strong fumarolic activity was seen emanating from the summit of Mawson Peak. Observers suggested the presence of a second emission point on the S slopes 100-200 m below the summit.

On 9 November, a helicopter flyover of Mawson Peak revealed that the crater and lava lake observed in 1987 were no longer visible. Instead, the summit had the form of a steep, irregular ice dome with gases venting through its apex (figure 4). The flyover also confirmed an apparently distinct area of activity 150-200 m below Mawson Peak near the head of Lied Glacier (Kiernan and McConnell, 2000). This newly discovered area was separated from the summit vent by several hundred meters of clean, white ice.

Figure 4. Summit of Mawson Peak (Heard Island) discharging gases, viewed from the SW on 9 November 2000. Approximately the top 150 m of the peak can be seen in this view. Photo by Paul Scott, courtesy of Kevin Kiernan.

Reports of more than one red glow source from the 1950-52 and 1985 eruptive events hinted at the possible existence of a second vent on Big Ben (ANARE Station Reports, and Neumann van Padang, 1963). Recent failure to locate such a vent led Quilty and Wheller (2000) to conclude that the previously observed multiple red glows were attributable to magma ponded in the summit crater and lava flowing down Big Ben's flanks. Current observations, however, now suggest the presence of a separate, lower vent in the vicinity of the 1985 flow.

On 13 November observers from Fairchild Beach on the N coast of Heard Island noted brown fumes venting from the summit area. The following day, fumarolic activity was observed from a vantage point on the E moraine of Browns Glacier Lagoon on the N coast.

References. Kiernan, K., and McConnell, A., 2000, ASAC Project 1118, Geomorphological Evolution of Heard Island: Report to Atlas Cove Station Leader, ANARE.

Neumann van Padang, M., 1963, Arabia and the Indian Ocean: Catalogue of the Active Volcanoes of the World, v. 16, p. 1-64.

Quilty, P.G., and Wheller, G., 2000, Heard Island and the McDonald Islands: A window on the Kerguelen Plateau: Papers & Proceedings of the Royal Society of Tasmania, v. 133, no. 2, p. 1-12.

Information Contact: Kevin Kiernan, Geography and Environmental Studies, University of Tasmania, GPO Box 252-79, Hobart TAS 7001, Australia (Email: Kevin.Kiernan@fpb.tas.gov.au).

02/2001 (BGVN 26:02) Increased fumarolic activity in February and March 2001; possible lava flow

Fumarolic activity emanating from Big Ben stratovolcano on Heard Island increased since the previous report period of October-November 2000 (BGVN 25:11). Both the vent at the summit of Mawson Peak and the second, recently confirmed vent downslope from the summit, were involved in the activity in early February 2001.

At about 2100 on 2 February an increased emission of volatiles was observed from Atlas Cove, located ~15 km NW of the summit where the main island connects with the Laurens Peninsula (see maps in SEAN 10:02 and BGVN 23:02). Under daylight the plume had a yellow-colored tinge. By midnight venting increased substantially. Observations continued until 0100 on 3 February when emissions appeared to diminish and clouds obscured the view. No lava or ejecta were observed from the Atlas Cove vantage point.

The plumes rose up to ~1,000 m in height, but tended to vary in extent over time. The precise points of emission were hidden by the high shoulder of Big Ben. Nevertheless, the emissions appeared to emanate from two discrete vents, one at Mawson Peak, and the other the newly discovered vent estimated to be 300-400 m vertically below it (lower than previously thought) on the S-facing slope.

Observations on the afternoon of 3 February revealed further abatement of volatile venting. Some workers suggested the presence of a third vent based on observations from Anzac Peak on Laurens Peninsula at the NW end of the island, but these findings are not yet substantiated. From a high point on Laurens Peninsula a black lava flow (?) on Mawson Peak was observed to be closer to the Atlas Cove side of the island than on previous visits. The possible flow was ~100 m wide and ~1,500 m long, but size estimates were hindered by distance, the enormity of Big Ben, the lack of any comparative scale, and the acute viewing angle.

On 5 March observers obtained good views of Big Ben from Red Island, at the farthest N tip of the Laurens Peninsula, but were unable to discern any summit activity despite clear conditions. Further observations from the same vantage point at 1330 on 7 March afforded a brief 5-8 minute view of the summit and revealed that a significant plume rose 100-200 m and drifted several kilometers downwind. The plume's width was estimated to be 50 m. The "black scar" first viewed on 3 February and interpreted as a plausible lava flow was again visible and appeared unchanged since its last observation.

The findings in early February and March 2001 are consistent with recent observations during a helicopter overflight of Big Ben that confirmed the presence of a vent well below the summit of Mawson Peak (Kiernan & McConnell, 2000). They compound the likelihood that more than one vent was involved in earlier eruptive activity during 1950-52 and 1985 (ANARE Station Reports; Neumann van Padang, 1963), contrary to recent conclusions by Quilty & Wheller (2000). Observations of volcanism on Heard Island, however, are limited because of its remoteness, and since the summit area is frequently shrouded in clouds. Hence, the general level of activity observed recently is difficult to assess.

References. Kiernan, K., and McConnell, A., 2000, ASAC Project 1118, Geomorphological Evolution of Heard Island: Report to Atlas Cove Station Leader, ANARE.

Neumann van Padang, M., 1963, Arabia and the Indian Ocean: Catalogue of the Active Volcanoes of the World, v. 16, p. 1-64.

Quilty, P.G., and Wheller, G., 2000, Heard Island and the McDonald Islands: A window on the Kerguelen Plateau: Papers & Proceedings of the Royal Society of Tasmania, v. 133, no. 2, p. 1-12.

Information Contacts: Stu Fitch and Andrew Lock, Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia (URL: http://www.antdiv.gov. au/, Email: stuart.fitch@afma.gov.au, Andrew_Lock@aad.gov.au); C.J. Klok, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa (URL: http://www.up.ac.za/academic/zoology/, Email: cjklok@zoology.up.ac.za); Kevin Kiernan and Anne McConnell, Geography & Environmental Studies, University of Tasmania, GPO Box 252-79, Hobart TAS 7001, Australia (URL: http://www.geol.utas.edu.au/geog/, Email: kevink@fpb.tas.gov.au, annemc@aaa.net.au).

03/2001 (BGVN 26:03) Photographs of upper slopes substantiate reports of activity from two distinct vents

Photographs taken during early February 2001 at Heard (BGVN 26:02) revealed the character and location of the activity there. Figures 5 and 6 were taken on the early morning of 3 February, shortly after midnight against a dark sky. Light from the active vents illuminated the overcast sky and Big Ben stratovolcano. The two distinct light sources pictured in figure 6 evidenced activity from two separate vents. No research-related visits to the remote Heard Island are planned in the immediate future.

Figure 5. View of Big Ben looking SE from Atlas Cove. Copyright Stu Fitch, courtesy of Kevin Kiernan.
Figure 6. Telephoto view of Big Ben's upper slopes looking SE from Atlas Cove. Copyright Stu Fitch, courtesy of Kevin Kiernan.

References. Kiernan, K., and McConnell, A., 2000, ASAC Project 1118, Geomorphological Evolution of Heard Island: Report to Atlas Cove Station Leader, ANARE.

Neumann van Padang, M., 1963, Arabia and the Indian Ocean: Catalogue of the Active Volcanoes of the World, v. 16, p. 1-64.

Quilty, P.G., and Wheller, G., 2000, Heard Island and the McDonald Islands: A window on the Kerguelen Plateau: Papers & Proceedings of the Royal Society of Tasmania, v. 133, no. 2, p. 1-12.

Information Contacts: Stu Fitch, Australian Antarctic Division (AAD) (Email: stufitch@hotmail.com); Andrew Lock, AAD (Email: Andrew_Lock@aad.gov.au); C.J. Klok, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa (Email: cjklok@zoology.up.ac.za); Kevin Kiernan and Anne McConnell, Geography & Environmental Studies, University of Tasmania, GPO Box 252-79, Hobart TAS 7001, Australia (Email: kevink@fpb.tas.gov.au, annemc@aaa.net.au).

01/2003 (BGVN 28:01) Infrared data show previously unknown activity during May-June 2000

Between 13 May 2000 and 30 January 2003, thermal alerts on Heard Island occurred on the following dates: 24 May; 3, 5, and 6 June; 25 September; 29 October; 5, 15, 19, and 24 November; 16, 17, 26, and 30 December 2000; and 2 February 2001 (figure 7). Since then no further thermal alerts have been recorded. There have been no reports of May-June 2000 activity on Heard Island published in the Bulletin. However, Rothery and Coppola are confident that the MODIS data prove high-temperature volcanic activity at these times. The late-2000 period of MODIS thermal alerts is substantiated by reports from ships and helicopters. The first of these, "fumarolic activity" on 19 October (BGVN 25:11), is 24 days later than the first MODIS thermal alert in this period. A fresh lava flow was suspected but unproven on 3 February (BGVN 26:02), and two incandescent vents were photographed on the same day (BGVN 26:03). The interpretation of the MODIS data is that lava effusion is likely. The locations of the alert pixels (figure 8) suggest that activity was on the WSW side of the summit, and may have extended about halfway to the shore.

Figure 7. MODIS detected alerts on Heard during January 2000-March 2001. Courtesy of Diego Coppola and David Rothery, The Open University.
Figure 8. Locations of alert-pixels on Heard during 2001-2002. Grid squares are 1 km on a side. Base map from BGVN 17:05 (after Barling, 1990). Courtesy of Diego Coppola and David Rothery, The Open University.

Reference. Barling, J., 1990, Heard and McDonald Islands, in Le Masurier, W., and Thomson, J., eds., Volcanoes of the Antarctic Plate and southern Oceans: American Geophysical Union, Washington DC, p. 435-441.

Information Contacts: David A. Rothery and Diego Coppola, Department of Earth Sciences, The Open University, Milton Keynes MK 6AA, United Kingdom (Email: d.a.rothery@open.ac.uk, d.coppola@open.ac.uk).

12/2004 (BGVN 29:12) Thermal alerts indicate crater lake activity starting in June 2003 until June 2004

Infrared satellite data triggered MODVOLC thermal alerts between 24 May 2000 and 2 February 2001 (BGVN 28:01). A new series of alerts began on 9 June 2003, with frequent alerts continuing until 14 June 2004. The cloud-free ASTER imagery from June 2003 to June 2004 was examined, and although it does not offer very complete coverage of this new phase of activity, all the images contained very small anomalies (just a few pixels) in the central crater. This suggests that most of these alerts are due to increased activity at the lava lake, with no indication of lava flows. Also, all the 2003-2004 MODVOLC anomalies were 1-2 pixels (no elongate thermal anomalies), further suggesting that this is local central-vent activity.

Information Contacts: Matt Patrick, Luke Flynn, Harold Garbeil, Andy Harris, Eric Pilger, Glyn Williams-Jones, and Rob Wright, HIGP Thermal Alerts Team, Hawai'i Institute of Geophysics and Planetology (HIGP) / School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (http://hotspot.higp.hawaii.edu/, Email: patrick@higp.hawaii.edu).

05/2006 (BGVN 31:05) 2006 imagery indicates renewed volcanism

Matt Patrick observed from MODIS (Moderate Resolution Imaging Spectroradiometer) images analyzed by the HIGP MODVOLC algorithm that relatively new activity began in March 2006 at Heard Island. Two isolated alerts occurred on 11-12 March 2006, and sustained alerts occurred from 7-18 May, 28 May-5 June, and 13-20 June (table 1). Alerts were 1-3 pixels in size. The pixel locations all appeared to be clustered generally near the summit of Big Ben, suggesting central vent (lava lake?) activity rather than lava flows. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images over the last several months have all been cloudy and therefore unable to reinforce or support the MODVOLC results. However, a nighttime ASTER image on 29 May 2006 at 0110 showed the new activity (figure 9).

Table 1. MODVOLC alerts for 2006 through 21 June. Courtesy of Hawai'i Institute of Geophysical and Planetology MODIS web site.

     Date      Time      Pixels          Satellite
    (2006)    (local)              (A = aqua, T = Terra)

    11 Mar     2315        1                 T
    12 Mar     0100        2                 A
    07 May     0100        1                 T
    07 May     2305        1                 T
    08 May     0150        1                 A
    09 May     2255        1                 T
    10 May     0140        1                 A
    11 May     2335        1                 T
    18 May     2250        2                 T
    28 May     2325        1                 T
    29 May     0110        2                 A
    02 Jun     2345        3                 T
    03 Jun     0130        2                 A
    05 Jun     0115        1                 A
    13 Jun     2325        2                 T
    14 Jun     0110        4                 A
    15 Jun     0010        2                 T
    16 Jun     0100        1                 A
    20 Jun     2330        1                 T
Figure 9. ASTER image of Heard Island taken at 0110 on 29 May 2006. The main image is the thermal infrared Band 14 (90 m pixel size), with the inserts showing the shortwave infrared (SWIR Band 9; 30 m pixel size) and thermal infrared (TIR Band 14) closeups. This a nighttime image with no visible bands with 15 m pixel size was difficult to interpret. The N-most segment of the summit anomaly, seen clearly in the Band 9 image, may be the vent, with the remainder of the anomaly possibly representing a ~ 900-m-long lava flow to the S. Alternatively, the segmentation of the anomaly may reflect different vents. Courtesy Matt Patrick, HIGP Thermal Alert Team.

The previous phases of activity spanned May 2000-February 2001 and June 2003-June 2004 (BGVN 29:12).

Information Contacts: Matt Patrick, HIGP Thermal Alerts Team, Hawai'i Institute of Geophysics and Planetology (HIGP) / School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/, Email: patrick@higp.hawaii.edu); Andrew Tupper, Darwin Volcanic Ash Advisory Centre, Bureau of Meteorology, Australia (Email: A.Tupper@bom.gov.au).

11/2006 (BGVN 31:11) ASTER images show hotspot for possible lava lake and flow 8 December

Matt Patrick reported that Heard Island continued to display evidence of activity in its summit crater (continuing the phase which began in May 2006, BGVN 31:05). Figure 10 presents an ASTER image (Bands 9-3-2) from 8 December 2006 showing a hotspot at the summit, presumably a lava lake, with a recently emplaced lava flow extending 700 m E.

Figure 10. ASTER image (Bands 9-3-2) from 8 December 2006 showing a hotspot at the summit of Heard Island. This is one of the rare daytime ASTER images that shows the summit clearly. Courtesy of Matt Patrick.

Table 2 lists the thermal anomalies recorded by the Hawai'i Institute of Geophysics and Planetology (HIGP) during 25 June 2006 (as last reported in the BGVN 31:05) to mid December 2006. The table lists 27 thermal anomalies during 25 June to 15 December 2006. There is no MODVOLC thermal anomaly on 8 December, the date of the ASTER image in the previous figure.

Table 2. Thermal anomalies from mid-June to mid-December 2006 from MODIS satellites. Courtesy of HIGP Thermal Alerts Team.

    Date (2006)    Time (UTC)    Pixels    Satellite

    25 Jun           1850          1         Terra
    17 Jul           2000          1         Aqua
    06 Aug           1935          1         Aqua
    13 Aug           0425          1         Terra
    13 Aug           1755          1         Terra
    13 Aug           1940          1         Aqua
    15 Aug           1930          1         Aqua
    22 Aug           1935          2         Aqua
    10 Sep           1820          2         Terra
    12 Sep           1805          1         Terra
    20 Sep           0930          1         Aqua
    21 Sep           1800          1         Terra
    21 Sep           1950          1         Aqua
    11 Oct           1735          1         Terra
    11 Oct           1925          2         Aqua
    24 Oct           0920          1         Aqua
    27 Oct           1735          2         Terra
    27 Oct           1925          1         Aqua
    02 Nov           1835          1         Terra
    07 Nov           1715          2         Terra
    07 Nov           1905          4         Aqua
    17 Nov           0830          1         Aqua
    24 Nov           0430          2         Terra
    25 Nov           0920          1         Aqua
    26 Nov           1750          2         Terra
    15 Dec           1820          1         Terra
    15 Dec           2005          1         Aqua

Matt Patrick noted that it is not surprising that the ASTER image showed a thermal anomaly but MODVOLC did not. First, because ASTER has infrared bands at 30-90 m, it is inherently more sensitive to thermal anomalies than the 1-km MODIS bands (MODVOLC uses MODIS data). Second, the MODVOLC algorithm has a threshold which sometimes disregards low-level eruptive activity in order to avoid false alarms. The anomaly in the ASTER image was not particularly large or intense, so it is not surprising it did not show up in MODVOLC.

Information Contacts: Matthew Patrick, Dept. of Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (Email: mpatrick@mtu.edu, URL: http://www.geo.mtu.edu/~mpatrick); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts Team, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/).

03/2007 (BGVN 32:03) Thermal anomalies ~ 300 m apart may suggest two vents

An ASTER image over Heard for 29 February 2007 (figure 11) was found by Matt Patrick in which two thermal anomalies are shown, separated by ~ 300 m. The anomaly to the SE appeared to be a new feature, representing either a distinct vent or a hot distal portion of an active flow from the main vent. There are no anomalous shortwave pixels between the two anomalies as one might expect for an active lava surface, but the flow may be channeled underground between the anomalies. The total lack of anomalous pixels in the region between the two anomalies, however, caused Patrick to suspect that this is a distinct vent. If this is a distinct vent, it would be the first clear illustration of multiple vents at Heard. None of the previous images Patrick has studied covering the last 6 years (including the 8 December 2006 image, also using Band 9-3-1 color mapping, shown in figure 12) showed indications of a secondary anomaly.

Figure 11. An ASTER Band 9-3-1 RGB composite image of Heard for 29 February 2007, with the shortwave infrared band 9 mapped to red, indicating high temperatures. Two distinct anomalies near the summit of Mawson Peak are shown. The W-most anomaly is at the location of previous anomalies, which appear to be the summit crater (lava lake), while the anomaly 300 m SE is a new feature. Courtesy Matt Patrick.
Figure 12. An ASTER Band 9-3-1 RGB composite image of Heard for 8 December 2006, with the shortwave infrared band 9 mapped to red, indicating high temperatures. One distinct anomaly near the summit of Mawson Peak is shown. Courtesy Matt Patrick.

MODIS satellite data also revealed thermal anomalies on 24 different days between 27 December 2006 and 6 April 2007 (table 3).

Table 3. Thermal anomalies at Heard from mid-December 2006 to early April 2007 from MODIS satellites. Continued from table in BGVN 31:05. Courtesy of Hawai'i Institute of Geophysics and Planetology (HIGP) Hot Spots System.

    Date (UTC)    Time (UTC)    Pixels    Satellite

    27 Dec 2006     1845          1         Terra
    29 Dec 2006     1830          1         Terra
    31 Dec 2006     1820          2         Terra
                    2005          1         Aqua
    09 Jan 2007     1815          2         Terra
    19 Jan 2007     1850          1         Terra
    04 Feb 2007     1900          1         Aqua
    05 Feb 2007     1940          1         Aqua
    07 Feb 2007     1930          2         Aqua
    16 Feb 2007     1925          1         Aqua
    21 Feb 2007     1940          1         Aqua
    26 Feb 2007     0445          1         Terra
    05 Mar 2007     1820          2         Terra
    07 Mar 2007     1810          1         Terra
    11 Mar 2007     1745          1         Terra
    12 Mar 2007     1825          2         Terra
                    2015          1         Aqua
    14 Mar 2007     1815          1         Terra
                    2000          2         Aqua
    18 Mar 2007     1935          1         Aqua
    20 Mar 2007     1925          1         Aqua
    24 Mar 2007     1850          1         Terra
    26 Mar 2007     0505          1         Terra
    27 Mar 2007     1745          2         Terra
    28 Mar 2007     2015          2         Aqua
    29 Mar 2007     1920          1         Aqua
    06 Apr 2007     0450          1         Terra

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) Hot Spots System, University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu); Matthew Patrick, Dept. of Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (Email: mpatrick@mtu.edu, URL: http://www.geo.mtu.edu/~mpatrick).

06/2007 (BGVN 32:06) Eruption ends in April; three eruptions of more than 11 months long since 2000

Based on Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System MODVOLC analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) satellite thermal anomaly data, Matt Patrick reported in June 2007 that the eruption at Heard that started about a year ago (BGVN 31:05, 31:11, and 32:03) seemed to have ceased. Due to its isolated location, Heard Island is rarely visited, and satellite imagery provides the only regular information on eruptive activity. There have been three eruptive periods of 11 months or longer during which thermal anomalies were frequent since MODIS data came online in early 2000 up to 21 July 2007 (table 4).

Table 4. Summary of eruptive episodes at Heard based on MODVOLC analyses of MODIS thermal satellite data. Courtesy of Matt Patrick.

    Eruption    First Anomaly   Last Anomaly   Duration    Comments

    2000-2001   07 Mar 2000     02 Feb 2001    332 days    857 days until next eruption. An
                                                             earlier report (BGVN 28:01)
                                                             indicated that this eruption began
                                                             in May 2000, while Patrick's data
                                                             indicated that MODIS thermal alerts
                                                             began in March 2000.
    2003-2004   09 Jun 2003     14 Jun 2004    371 days    635 days until next eruption
    2006-2007   11 Mar 2006     06 Apr 2007    391 days    A single anomaly on 11-12 March 2006
                                                             was followed by lack on anomalies
                                                             until 6 May, when they became
                                                             frequent. (Note: since 6 April
                                                             2007, only one, single-pixel anomaly
                                                             has been measured--24 July 2007.
                                                             Patrick concluded that the 2006-2007
                                                             eruptive phase of nearly daily
                                                             alerts ended on 6 April 2007.)

A graph prepared by Patrick and the HIGP Thermal Alert System Team (figure 13) showing radiant heat output and distance of alert pixels from the volcano vent (1 pixel=1 km) also shows the three separate eruptions since 2000. Pixel distances determined from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and the MODVOLC alert show that activity during all three eruptions was centered around the summit crater, with sporadic lava flows during the 2000-2001 and 2006-2007 episodes. Only the 2000-2001 eruption clearly featured long (i.e. several kilometer long) lava flows, as shown by the > 3 km distance in July 2000 (figure 13). Patrick noted that a 2-km-long lava flow seen in Landsat imagery early in the 2000 eruption, on 7 July 2000 (figure 14), was detected by MODVOLC on 10 July 2000. However, since the location of the MODVOLC alerts from that time period were not far from the source vent, the alerts were not effective for showing the length of the lava flow.

Figure 13. MODVOLC data for Heard showing radiant heat output (top) and distance of alert pixels from the vent (bottom), January 2000-21 July 2007. Courtesy of Matt Patrick.
Figure 14. Landsat image showing active flow at Heard Island, 7 July 2000. Courtesy of Matt Patrick.

The 2003-2004 and 2006-2007 activity appeared to be largely limited to the summit crater, as indicated by the small MODVOLC distances (i.e. 1 km or less, with 1 km being the size of the pixels and inherent uncertainty) and ASTER data examined. ASTER data did show a possible 900-m-long flow to the SW of the vent in May 2006 (BGVN 31:05 and 31:11) and a clear 700-m-long flow of lava extending NE of the summit crater in December 2006, indicating that small effusive events have occurred in addition to central vent activity in the 2006-2007 phase. Patrick has not observed to this time any obvious ash plumes in the ASTER images, but all of the images examined appeared to be partly cloudy.

Patrick noted that it is difficult to determine exactly how often thermal anomalies for Heard Island may be completely obscured by clouds. The benefit of MODIS is the 1-2 observations per day, so that if activity is indeed present, it should not elude detection for very long. In the MODVOLC plot (figure 13), there were fairly regular alerts over the course of a year or so at a time, during which there must have been some cloud cover.

Information Contacts: Matt Patrick, Dept. of Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (Email: mpatrick@mtu.edu, URL: http://www.geo.mtu.edu/~mpatrick/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/NaturalHazards/).

01/2008 (BGVN 33:01) Rare thermal anomalies through March 2008 suggest eruptions

Due to its isolated location in the S Indian Ocean on the Kerguelen Plateau, Heard Island is rarely visited, and satellite imagery provides the only regular information on eruptive activity. The Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System MODVOLC provides an analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) satellite thermal anomaly data, with 1-2 daily observations. That system remains the best source of evidence at isolated, glacier-covered volcanoes like Heard, though it is difficult to determine how often meteorological clouds may obscure thermal anomalies.

The last report summarized activity beginning in March 2000 (BGVN 32:06), describing three eruptive episodes (based on thermal anomalies). The last thermal anomaly mentioned was on 6 April 2007. As seen on table 5, the MODVOLC system recorded the next thermal anomaly on 24 July 2007. For the rest of 2007, there were anomalies recorded on two days in August and two days in November. During 2008 as late as 2 March, anomalies occurred in February and March.

Table 5. Thermal anomalies measured by MODIS/MODVOLC over Heard Island during 7 April 2007 through 2 March 2008. Courtesy of HIGP Thermal Anomalies Team.

    Date           Time    Pixels    Satellite
                   (UTC)

    24 Jul 2007    1750       1        Aqua
    12 Aug 2007    1820       1        Terra
    30 Aug 2007    1955       1        Aqua
    11 Nov 2007    1800       1        Terra
    11 Nov 2007    1945       2        Aqua
    22 Feb 2008    1955       3        Aqua
    02 Mar 2008    1950       1        Aqua

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/).

09/2010 (BGVN 35:09) Quiet, with minor thermal anomalies, since March 2008

According to Matt Patrick (USGS) in a report dated 25 October 2010, satellite imagery has not detected unambiguous eruptive activity at Heard since March 2008. No MODVOLC thermal anomalies have been detected since that time, and recent cloud-free ASTER images generally lacked indications of eruptive activity. Given Heard's isolation, satellite imagery provides the only regular information on its behavior. As previously reported, numerous anomalies had been noted in 2006 and 2007, clearly indicating eruptions (BGVN 31:05, 31:11, 32:03, and 32:06). Rare thermal anomalies were recorded through 2 March 2008, with sufficient radiance and extent to suggest eruptions (BGVN 33:01).

Patrick found recent ASTER images that include faint thermal anomalies. The anomalies appeared at Big Ben volcano's Mawson Peak, which is both the volcano's and the island's summit, and hosts the active vent. The most recent cloud-free image, taken on 25 February 2010 (figure 15), shows a small (2-3 pixels in size) thermal anomaly, indicating either very low-level activity or simply warm ground in and around the vent.

Figure 15. ASTER image of Heard on 25 February 2010, showing a thermal anomaly (image based on Aster band 14, 11-micron wavelength). Courtesy of Matt Patrick (USGS) and the ASTER project.

Information Contacts: Matthew R. Patrick, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan, and the Jet Propulsion Laboratory in the U.S. (URL: http://asterweb.jpl.nasa.gov/).

01/2013 (BGVN 38:01) Satellite imagery reveals lava flows in December 2012

We received an informal report from Matt Patrick (Hawaiian Volcano Observatory) on a new eruptive episode at Big Ben volcano, Heard Island (figure 16). He noted that MODVOLC thermal alerts reappeared at Heard in September 2012 after a four year hiatus (the last eruptive episode ended on 2 March 2008; BGVN 33:01), suggesting the start of a new eruptive episode at the volcano. Since Heard Island is unsettled and extremely isolated, monitoring of the volcano is possibly primarily through satellite imagery (Patrick, 2013).

Figure 16. A contour map (interval = 200 m) showing the partly ice-covered Heard Island. At the time of map preparation, the brown areas were ice free. Produced and issued in January 2000 by the Australian Antarctic Data Centre, Department of the Environment and Heritage, Commonwealth of Australia.

EO-1 Advanced Land Imager images collected through late 2012 and early 2013 confirm that eruptive activity resumed around September 2012, in the form of a low-level effusive style eruption similar to its other recent eruptions (figures 17 and 18). Patrick noted that the vent crater had enlarged significantly over the four years following the end of the last eruptive phase, March 2006-March 2008.

Figure 17. A series of images documenting the summit crater and subsequent lava advances at Mawson Peak, Heard Island from 3 July 2012 to 5 January 2013. The Earth Observing-1 (EO-1) satellite’s Advanced Land Imager (ALI) Band 1 (panchromatic) images (10-m-pixel size) acquired several clear images on 3 July, 9 September, 13 October, 15 and 28 December 2012, and 5 January 2013. North is to the top of the photos. In the first three images the 200-m diameter crater at the summit of Mawson Peak is easily visible, and there is no evidence of activity outside of the crater. Courtesy of Matt Patrick.
Figure 18. EO-1 ALI Band 10-3-2 RGB composites (30-m-pixel size) of the same series of images as in figure 17 (3 July 2012 to 5 January 2013). North is to the top of the photos. The red is the shortwave infrared band (Band 10, 2 microns); red pixels indicate high temperatures suggesting hot lava surfaces. As in figure 17, the 3 July 2012 image shows that the summit crater was cold, with no evidence of lava inside. However, the 9 September 2012 image clearly shows that elevated temperatures (and presumably lava) had appeared in the crater, consistent with the appearance of MODVOLC thermal alerts later that month. Therefore, this eruptive episode appears to have started around September. Courtesy of Matt Patrick.

The 15 December 2012 image in figure 17 shows that a short lava flow from the summit was emplaced on the SW flank. The flow was ~420 m long and had two lobes. By 28 December, a flow consisting of two lobes (presumably the same flow as in the 15 December image) had reached 770 m SW of the summit crater. In the 5 January 2013 image this flow was 780 m long and had changed little over the previous week.

Figure 18 shows that the 9 September and 13 October 2012 images suggested active lava contained with the summit crater. The 15 and 28 December 2012 images showed elevated temperatures on the lava flow SW of the summit, suggesting it was active over this interval, which was consistent with the observed elongation of the flow in the visible images. Fewer high-temperature pixels in the 5 January 2013 image and the meager advancement observed in the visible images, suggested that the flow had stalled by this point.

Overall, the activity as of mid-March 2013 had consisted of lava within the crater and a lava flow of at least 770 m long emplaced SW of the crater. This low-level effusive activity is consistent with the previous three eruptive episodes observed in satellite images at Heard Island (Patrick and Smellie, in review). These three episodes, May 2000-November 2001 (BGVN 25:11, 26:02, 26:03, and 28:01), June 2003-July 2004 (BGVN 29:12), and March 2006-March 2008 (BGVN 31:05, 31:11, 32:03, 32:06, 33:01, and 35:09), each lasted 1-2 years. On this basis, Patrick suggested that this new eruptive episode may persist for a similar duration. MODVOLC thermal alerts were measured nearly continuously from 21 September 2012 through 24 February 2013.

References. Patrick, M., 2013, A new eruptive episode at Big Ben Volcano, Heard Island, informal communication to BGVN, 23 February 2013.

Patrick, M.R., and Smellie, J.L., in review, A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-2010, Antarctic Science, in review in 2013.

Information Contacts: Matt Patrick, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/, Email: mpatrick@usgs.gov); Australian Antarctic Data Centre, Department of the Environment and Heritage, Commonwealth of Australia (URL: https://data.aad.gov.au/database/mapcat/heard/heard_island.gif); MODVOLC, Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/).

08/2013 (BGVN 38:08) Satellite thermal alerts continue to early October 2013

An HTML version of this report is not available, please read this report as a PDF file.

Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon volcano lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben volcano because of its extensive ice cover. The historically active Mawson Peak forms the island's 2745-m high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported in historical time at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Summary of Holocene eruption dates and Volcanic Explosivity Indices (VEI).

Start Date Stop Date Eruption Certainty VEI Evidence Activity Area or Unit
2012 Sep 5 ± 4 days 2014 Jun 17 (continuing) Confirmed 0 Historical Observations Mawson Peak
2006 Mar 11 2008 Mar 3 Confirmed 0 Historical Observations Mawson Peak
2003 Jun 9 2004 Jun 14 Confirmed 0 Historical Observations Mawson Peak
2000 Mar 7 (?) 2001 Feb Confirmed 2 Historical Observations Mawson Peak and upper south flank
1993 Jan 2 ± 15 days Unknown Confirmed 2 Historical Observations Mawson Peak
1992 May 29 (?) Unknown Confirmed 0 Historical Observations Mawson Peak
[ 1992 Jan 17 ] [ 1992 Jan 18 ] Uncertain     Mawson Peak
1985 Jan 14 1987 Jan (?) Confirmed 2 Historical Observations Mawson Peak
1954 Apr 13 (?) 1954 Jun 13 (?) Confirmed 2 Historical Observations Mawson Peak
1953 Aug 20 1953 Nov 18 Confirmed 2 Historical Observations Mawson Peak
1950 Jan 24 1952 Mar 12 (?) Confirmed 2 Historical Observations Mawson Peak
1910 Mar 1910 Apr Confirmed 2 Historical Observations Mawson Peak
[ 1881 Jun 2 ] [ Unknown ] Uncertain 2  

This compilation of synonyms and subsidiary features may not be comprehensive. Features are organized into four major categories: Cones, Craters, Domes, and Thermal Features. Synonyms of features appear indented below the primary name. In some cases additional feature type, elevation, or location details are provided.



Synonyms
Kaiser Wilhelm Mountain


Cones
Feature Name Feature Type Elevation Latitude Longitude
Big Ben Stratovolcano 2415 m 53° 6' 0" S 73° 20' 0" E
Cape Bidlingmaier Cone 120 m 53° 1' 5" S 73° 31' 55" E
Cape Cartwright Cone 52° 59' 0" S 73° 15' 0" E
Corinth Head Cone 180 m 53° 0' 32" S 73° 24' 32" E
Dixon, Mount Stratovolcano 706 m 52° 59' 49" S 73° 17' 0" E
Drygalski, Mount Cone 210 m 53° 2' 0" S 73° 23' 0" E
Macey Cone Cone 124 m 52° 58' 55" S 73° 15' 25" E
Red Island Cone 52° 57' 54" S 73° 17' 53" E
Rogers Head Cone 145 m 53° 0' 4" S 73° 24' 11" E
Saddle Point Cone 107 m 53° 0' 47" S 73° 29' 28" E
Scarlet Hill Cone 410 m 53° 5' 49" S 73° 39' 32" E
A steam plume rises in 1985 or 1986 from the summit of Big Ben volcano on Heard Island in the southern Indian Ocean. It is seen here from an abandoned Australian geophysical station at Atlas Cove, NNW of the summit. The historically active Mawson Peak forms the island's 2745-m high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported in historical time at this isolated volcano.

Photo by A. Hitchman, 1985 (courtesy of Wally Johnson, Australian BMRGG, Canberra).
A steam plume, seen here from a ship to the SW, drifts from the summit of Heard volcano on January 14, 1985. Red glow and a lava flow was observed that night from the ship 25 km offshore and an eruption plume was visible for two days. Eruptive activity may have continued into 1987 at this isolated volcano. An active lava lake in a new cylindrical crater was observed by a December 1986-January 1987 summit expedition. A lava flow, probably dating back to January 1985, was seen descending 8-9 km from the summit.

Photo by André Giret, Expéditions Polaires Françaises, 1985.
Three small, low islands on the Kerguelen Plateau form the McDonald Islands. The largest island, McDonald, is only 1 sq km in area and 186 m high. This April 1997 photo shows steam venting at Samarang Hill (right). McDonald Island is composed of a layered phonolitic tuff plateau cut by phonolitic dikes and lava domes. A possible nearby active submarine center was inferred from phonolitic pumice that washed up on Heard Island in 1992. The snow-capped peak in the background is Heard volcano, 44 km to the east.

Copyrighted photo by Richard Williams, 1997 (Australian Antarctic Div., published in Global Volcanism Network Bulletin).

The following references have all been used during the compilation of data for this volcano, it is not a comprehensive bibliography. Discussion of another volcano or eruption (sometimes far from the one that is the subject of the manuscript) may produce a citation that is not at all apparent from the title.

Barling J, Goldstein S L, Nicholls I A, 1994. Geochemistry of Heard Island (Southern Indian Ocean): Characterization of an enriched mantle component and implications for enrichment of the sub-Indian Ocean mantle. J Petr, 35: 1017-1053.

LeMasurier W E, Thomson J W (eds), 1990. Volcanoes of the Antarctic Plate and Southern Oceans. Washington, D C: Amer Geophys Union, 487 p.

Neumann van Padang M, 1963. Arabia and the Indian Ocean. Catalog of Active Volcanoes of the World and Solfatara Fields, Rome: IAVCEI, 16: 1-64.

Wheller G, 1989. . (pers. comm.).

Volcano Types

Stratovolcano
Pyroclastic cone(s)

Tectonic Setting

Intraplate
Oceanic crust (< 15 km)

Rock Types

Major
Trachybasalt / Tephrite Basanite
Basalt / Picro-Basalt
Trachyandesite / Basaltic trachy-andesite
Trachyte / Trachyandesite
Phono-tephrite / Tephri-phonolite

Population

Within 5 km
Within 10 km
Within 30 km
Within 100 km
0
0
0
0

Affiliated Databases

Large Eruptions of Heard Information about large Quaternary eruptions (VEI >= 4) is cataloged in the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database of the Volcano Global Risk Identification and Analysis Project (VOGRIPA).
WOVOdat WOVOdat is a database of volcanic unrest; instrumentally and visually recorded changes in seismicity, ground deformation, gas emission, and other parameters from their normal baselines. It is sponsored by the World Organization of Volcano Observatories (WOVO) and presently hosted at the Earth Observatory of Singapore.
EarthChem EarthChem develops and maintains databases, software, and services that support the preservation, discovery, access and analysis of geochemical data, and facilitate their integration with the broad array of other available earth science parameters. EarthChem is operated by a joint team of disciplinary scientists, data scientists, data managers and information technology developers who are part of the NSF-funded data facility Integrated Earth Data Applications (IEDA). IEDA is a collaborative effort of EarthChem and the Marine Geoscience Data System (MGDS).
Smithsonian Collections Search the Smithsonian's NMNH Department of Mineral Sciences collections database. Go to the "Search Rocks and Ores" tab and use the Volcano Name drop-down to find samples.